Unknown

Dataset Information

0

The reach of the genome signature in prokaryotes.


ABSTRACT: BACKGROUND: With the increased availability of sequenced genomes there have been several initiatives to infer evolutionary relationships by whole genome characteristics. One of these studies suggested good congruence between genome synteny, shared gene content, 16S ribosomal DNA identity, codon usage and the genome signature in prokaryotes. Here we rigorously test the phylogenetic signal of the genome signature, which consists of the genome-specific relative frequencies of dinucleotides, on 334 sequenced prokaryotic genome sequences. RESULTS: Intrageneric comparisons show that in general the genomic dissimilarity scores are higher than in intraspecific comparisons, in accordance with the suggested phylogenetic signal of the genome signature. Exceptions to this trend, (Bartonella spp., Bordetella spp., Salmonella spp. and Yersinia spp.), which have low average intrageneric genomic dissimilarity scores, suggest that members of these genera might be considered the same species. On the other hand, high genomic dissimilarity values for intraspecific analyses suggest that in some cases (e.g. Prochlorococcus marinus, Pseudomonas fluorescens, Buchnera aphidicola and Rhodopseudomonas palustris) different strains from the same species may actually represent different species. Comparing 16S rDNA identity with genomic dissimilarity values corroborates the previously suggested trend in phylogenetic signal, albeit that the dissimilarity values only provide low resolution. CONCLUSION: The genome signature has a distinct phylogenetic signal, independent of individual genetic marker genes. A reliable phylogenetic clustering cannot be based on dissimilarity values alone, as bootstrapping is not possible for this parameter. It can however be used to support or refute a given phylogeny and resulting taxonomy.

SUBMITTER: van Passel MW 

PROVIDER: S-EPMC1621082 | biostudies-other | 2006

REPOSITORIES: biostudies-other

altmetric image

Publications

The reach of the genome signature in prokaryotes.

van Passel Mark W J MW   Kuramae Eiko E EE   Luyf Angela C M AC   Bart Aldert A   Boekhout Teun T  

BMC evolutionary biology 20061013


<h4>Background</h4>With the increased availability of sequenced genomes there have been several initiatives to infer evolutionary relationships by whole genome characteristics. One of these studies suggested good congruence between genome synteny, shared gene content, 16S ribosomal DNA identity, codon usage and the genome signature in prokaryotes. Here we rigorously test the phylogenetic signal of the genome signature, which consists of the genome-specific relative frequencies of dinucleotides,  ...[more]

Similar Datasets

| S-EPMC2643941 | biostudies-literature
| S-EPMC546175 | biostudies-literature
| S-EPMC3571318 | biostudies-literature
| S-EPMC6224172 | biostudies-literature
| S-EPMC2845580 | biostudies-literature
| S-EPMC2781299 | biostudies-literature
| S-EPMC2691844 | biostudies-other
2018-03-06 | GSE106133 | GEO
| PRJNA819492 | ENA
| PRJNA752455 | ENA