Unknown

Dataset Information

0

Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha.


ABSTRACT: Peptides with potent broad-spectrum antibiotic activity have been identified in many animal species. Recent investigations have demonstrated that epithelial cells are a site of antibiotic peptide expression, suggesting that these peptides contribute to host defense at mucosal surfaces. Expression of tracheal antimicrobial peptide (TAP), a member of the beta-defensin family of peptides, is inducible in cultured tracheal epithelial cells (TEC) upon challenge with bacterial lipopolysaccharide (LPS) (G. Diamond, J.P. Russell, and C.L. Bevins, Proc. Natl. Acad. Sci. USA, in press). In this study, an anchored reverse transcriptase PCR strategy was used to determine if TAP was the sole beta-defensin isoform expressed upon stimulation of the cells with LPS. In addition to TAP, a second class of cDNA clones which encoded lingual antimicrobial peptide (LAP), a beta-defensin peptide recently isolated from a different mucosal site, the bovine tongue, was identified (B.S. Schonwetter, E.D. Stolzenberg, and M. Zasloff, Science 267:1645-1648, 1995). Northern (RNA) blot analysis demonstrated in vivo expression of LAP mRNA in tracheal mucosa. Levels of LAP mRNA were higher in cultured TEC challenged with either LPS or tumor necrosis factor alpha than in control cells. Thus, a response of TEC exposed to inflammatory mediators is induction of antibiotic-encoding genes, including both TAP and LAP. This work complements the in vivo studies of Schonwetter et al. (cited above), which showed elevated levels of LAP mRNA in squamous epithelial cells of the tongue near sites of tissue injury and inflammation, by suggesting possible mediators of the in vivo observation. Together these lines of investigations support the hypothesis that inducible expression of endogenous antibiotic peptides by inflammatory mediators characterizes local defense of mammalian mucosal surfaces.

SUBMITTER: Russell JP 

PROVIDER: S-EPMC173962 | biostudies-other | 1996 May

REPOSITORIES: biostudies-other

altmetric image

Publications

Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha.

Russell J P JP   Diamond G G   Tarver A P AP   Scanlin T F TF   Bevins C L CL  

Infection and immunity 19960501 5


Peptides with potent broad-spectrum antibiotic activity have been identified in many animal species. Recent investigations have demonstrated that epithelial cells are a site of antibiotic peptide expression, suggesting that these peptides contribute to host defense at mucosal surfaces. Expression of tracheal antimicrobial peptide (TAP), a member of the beta-defensin family of peptides, is inducible in cultured tracheal epithelial cells (TEC) upon challenge with bacterial lipopolysaccharide (LPS)  ...[more]

Similar Datasets

| S-EPMC3465483 | biostudies-literature
| S-EPMC7348050 | biostudies-literature
| S-EPMC5854104 | biostudies-literature