Molecular characterization of a major serotype M49 group A streptococcal DNase gene (sdaD).
Ontology highlight
ABSTRACT: Group A streptococci (GAS) express up to four types of secreted DNases. Although GAS infections are correlated with the production of anti-DNase B antibodies, the roles of DNases in the pathogenesis of GAS infections remain unclear. From a lambda library of serotype M49 strain CS101 GAS genome, a 2,147-bp fragment expressing DNase activity on an indicator agar was identified and sequenced. One 1,155-bp open reading frame (ORF) was identified in this fragment. This ORF was found to be 48% identical on the amino acid level to group C streptococcal DNase (Sdc). The regions of highest homology corresponded to amino acid residues that were also identified as part of the active site in staphylococcal nuclease. Transcription analysis revealed a specific 1.3-kb mRNA, which corresponded to the size predicted by the promoter and transcription termination signature sequences and indicated a monocistronic mode of transcription. Allelic replacement of the ORF rendered a M49 mutant devoid of extracellular DNase activity when cultured on indicator agar. Virulence parameters such as resistance to phagocytosis were not affected by the mutation. The sda gene was cloned and expressed in Escherichia coli as a thioredoxin fusion. By performing Ouchterlony immunodiffusion on the recombinant protein and by using protein preparations from culture supernatants of wild-type bacteria and the DNase mutant, the results of immunoreactivity with DNase type-specific polyclonal rabbit antisera classified the DNase as a type D enzyme. Fifty percent of patients with sera exhibiting high titers of antistreptolysin or anti-DNase B antibodies also had SdaD-reactive antibodies in comparison with <10% of serologically normal controls. While the value of recombinant SdaD for diagnostic purposes needs to be clarified, the isogenic DNase mutant pair of M49 should allow the significance of GAS DNase D as a bacterial virulence factor to be determined.
SUBMITTER: Podbielski A
PROVIDER: S-EPMC174529 | biostudies-other | 1996 Dec
REPOSITORIES: biostudies-other
ACCESS DATA