Uptake of pathogenic intracellular bacteria into human and murine macrophages downregulates the eukaryotic 26S protease complex ATPase gene.
Ontology highlight
ABSTRACT: A differential PCR technique detected the transcriptional downregulation of the mss1 (mammalian suppressor of svg1) gene in murine J774A.1 macrophages following uptake of Salmonella typhimurium. This downregulation was also noted after entry of virulent strains of Listeria monocytogenes and Shigella flexneri, two other facultative intracellular bacterial species. In contrast, uptake of nonpathogenic Escherichia coli HB101, an aroA mutant of S. typhimurium, an invasion plasmid antigen B (ipaB) mutant of S. flexneri, hemolysin (hly) and positive-regulatory factor (prfA) mutants of L. monocytogenes, or latex beads produced mss1 expression levels similar to that of uninfected macrophages. Transcriptional downregulation of mss1 was also shown to occur in S. typhimurium-infected human U937 cells, albeit to an extent less than that in murine J774A.1 cells. In addition to a lower abundance of mss1 transcripts, we also demonstrate for the first time that less MSS1 protein was detected in intracellular-bacterium-infected cells (beginning about 1 h after entry of the pathogenic intracellular bacteria) than in noninfected cells. Some strains with specific mutations in characterized genes, such as an ipaB mutant strain of S. flexneri and an hly mutant strain of L. monocytogenes, did not elicit this lower level of expression of MSS1 protein. The decrease in MSS1 within infected macrophages resulted in an accumulation of ubiquitinated proteins, substrates for MSS1. Since MSS1 comprises the ATPase part of the 26S protease that degrades ubiquitinated proteins, we hypothesize that downregulation of the mss1 gene by intracellular bacterial entry may help subvert the host cell's normal defensive response to internalized bacteria, allowing the intracellular bacteria to survive.
SUBMITTER: Schwan WR
PROVIDER: S-EPMC175682 | biostudies-other | 1997 Nov
REPOSITORIES: biostudies-other
ACCESS DATA