Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides.
Ontology highlight
ABSTRACT: The carotenoid biosynthesis genes form a cluster within the genome of Rhodobacter sphaeroides, lying in the middle of a larger cluster and 45 kb in length, which contains genes for bacteriochlorophyll biosynthesis and for the reaction center and light-harvesting apoproteins. The positions and approximate limits of the carotenoid genes were determined previously by localized transposon Tn5 mutagenesis and by comparison with the closely related Rhodobacter capsulatus carotenoid gene cluster. In this report, analysis of the DNA and deduced amino acid sequences of the carotenoid genes in R. sphaeroides are presented. Twenty-five Tn5 insertion mutants were used to produce a base-specific Tn5 insertion map of this region, and carotenoid gene assignment was supported by spectroscopic, ultrastructural, and high-pressure liquid chromatography analyses of these mutants. A region in the 3' end of crtD which affects bacteriochlorophyll biosynthesis was discovered, and CrtA was found to possess a proline-rich C-terminal region containing a repeated (Ala-Pro)n motif. CrtF also showed a high degree of sequence conservation with eukaryotic O-methyltransferases. This study provides gene sequences and assignments based upon a comprehensive structural, spectroscopic, and biochemical analysis of a range of carotenoid biosynthetic mutants; in each mutation, the point of Tn5 insertion is determined accurate to 1 bp on the gene cluster.
SUBMITTER: Lang HP
PROVIDER: S-EPMC176850 | biostudies-other | 1995 Apr
REPOSITORIES: biostudies-other
ACCESS DATA