Unknown

Dataset Information

0

Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity.


ABSTRACT: AIMS/HYPOTHESIS: Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. MATERIALS AND METHODS: Insulin sensitivity in Pten heterozygous (Pten(+/-)) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten(+/-) mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3beta (GSK3beta), a substrate of PKB/Akt, was determined by western immunoblotting. RESULTS: Following i.p. insulin challenge, blood glucose levels in Pten(+/-) mice remained depressed for up to 120 min, whereas glucose levels in wild-type mice began to recover after approximately 30 min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten(+/-) mice. Enhanced glucose uptake was observed both in Pten(+/-) myocytes and in skeletal muscle of Pten(+/-) mice by PET. PKB and GSK3beta phosphorylation was enhanced and prolonged in Pten(+/-) myocytes. CONCLUSIONS/INTERPRETATION: Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten(+/-) mice.

SUBMITTER: Wong JT 

PROVIDER: S-EPMC1781097 | biostudies-other | 2007 Feb

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC4216355 | biostudies-literature
| S-EPMC4167384 | biostudies-literature
| S-EPMC2843233 | biostudies-literature
| S-EPMC2656613 | biostudies-literature
| S-EPMC2781639 | biostudies-literature
| S-EPMC2189995 | biostudies-other
| S-EPMC3692528 | biostudies-literature
| S-EPMC4933174 | biostudies-literature
| S-EPMC3093869 | biostudies-literature
| S-EPMC5392559 | biostudies-literature