Detection of luciferase gene sequence in nonluminescent Vibrio cholerae by colony hybridization and polymerase chain reaction.
Ontology highlight
ABSTRACT: Bioluminescence is a trait observed among approximately 10% of Vibrio cholerae isolates. We have demonstrated that not only do some strains of V. cholerae produce low levels of light, undetectable by the human eye, but the luciferase gene sequence is present in strains of V. cholerae which emit no detectable light, evidenced by hybridization with a luciferase DNA probe. Comparisons of the amino acid sequences of luciferase enzymes of marine species have shown that these proteins have diverged to the point where they have only short regions of amino acid identity. The polymerase chain reaction method of DNA amplification with oligonucleotide primers based on these regions was used to isolate a region of the luxA gene from both luminescent and nonluminescent V. cholerae strains. The nucleotide sequence of this region was determined and reveals that nonluminescent V. cholerae have 99.7% nucleotide sequence similarity in this region with the luminescent biovar V. cholerae bv. albensis as well as significant similarity to other species of bioluminescent bacteria, a finding that is in accord with the hypothesis that these species have a common luminescent ancestor, most probably from the marine environment.
SUBMITTER: Palmer LM
PROVIDER: S-EPMC182944 | biostudies-other | 1991 May
REPOSITORIES: biostudies-other
ACCESS DATA