The role of presenilin and its interacting proteins in the biogenesis of Alzheimer's beta amyloid.
Ontology highlight
ABSTRACT: The biogenesis and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer's disease. The presenilins and its interacting proteins play a pivotal role in the generation of Abeta from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (gamma-secretase) that cleaves APP to generate Abeta. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the gamma-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of gamma-secretase play important roles in modulating Abeta production. This review will discuss the components of the gamma-secretase complex and the role of presenilin interacting proteins on gamma-secretase activity.
SUBMITTER: Verdile G
PROVIDER: S-EPMC1832151 | biostudies-other | 2007 Apr-May
REPOSITORIES: biostudies-other
ACCESS DATA