Unknown

Dataset Information

0

Structure, expression, and regulation of the kilC operon of promiscuous IncP alpha plasmids.


ABSTRACT: The kil-kor regulon was first identified on the broad-host-range IncP alpha plasmid RK2 by the presence of multiple kil loci (kilA, kilB, kilC, and recently kilE) that are lethal to Escherichia coli host cells in the absence of regulation by kor functions in various combinations. Whereas the kilB operon is required for mating-pair formation during conjugation, the functions encoded by the other kil loci are not known. They are not essential for replication or conjugal transfer, but their coregulation with replication and transfer genes indicates that they are likely to be important for RK2. In this report, we describe molecular and genetic studies on kilC. We determined the nucleotide sequence of the kilC region, which is located between the origin of vegetative replication (oriV) and transposon Tn1 on RK2. Primer extension analysis identified the transcriptional start site and showed that a sequence corresponding to a strong sigma 70 promoter is functional. The abundance of RNA initiated from the kilC promoter is reduced in the presence of korA and korC, as predicted from genetic analysis of kilC regulation. The first gene of the kilC operon (klcA) is sufficient to express the host-lethal phenotype of the kilC determinant in the absence of korA and korC. By comparing RK2 to the related IncP alpha plasmids pUZ8 and R995, we determined that the Tn1 transposon in RK2 interrupts a gene (klcB) immediately downstream of klcA. Thus, the kilC determinant is normally part of an autoregulated operon of three genes: klcA, klcB, and korC. klcA is predicted to encode a 15,856-Da polypeptide that is related to the ArdB antirestriction protein of the IncN plasmid pKM101, suggesting a role for klcA in the broad host ranges of IncP alpha plasmids. The predicted product of the uninterrupted klcB gene is a polypeptide of 51,133 Da that contains a segment with significant similarity to the RK2 regulatory proteins KorA and TrbA. Located 145 bp upstream of the kilC promoter is a 10th copy of the 17-bp oriV iteron sequence in inverted orientation relative to that of the other nine iterons of oriV. Iteron 10 is identical to the "orphan" iteron 1, and both have identical 6-bp flanking sequences that make them likely to be strong binding sites for the TrfA replication initiator protein. The locations and relative orientation of orphan iterons 10 and 1 raise the possibility that these iterons promote the formation of a DNA loop via protein-protein interactions by bound TrfA and lead us to propose that they demarcate the functional origin of replication. This analysis of the kilC region and our previous studies on the other kil loci of RK2 have revealed that the region between oriV and the korABF operon in wild-type IncP alpha plasmids is saturated by the kilC, kilE, and kilA loci arranged in four kor-regulated operons encoding a total of 12 genes.

SUBMITTER: Larsen MH 

PROVIDER: S-EPMC196341 | biostudies-other | 1994 Aug

REPOSITORIES: biostudies-other

altmetric image

Publications

Structure, expression, and regulation of the kilC operon of promiscuous IncP alpha plasmids.

Larsen M H MH   Figurski D H DH  

Journal of bacteriology 19940801 16


The kil-kor regulon was first identified on the broad-host-range IncP alpha plasmid RK2 by the presence of multiple kil loci (kilA, kilB, kilC, and recently kilE) that are lethal to Escherichia coli host cells in the absence of regulation by kor functions in various combinations. Whereas the kilB operon is required for mating-pair formation during conjugation, the functions encoded by the other kil loci are not known. They are not essential for replication or conjugal transfer, but their coregul  ...[more]

Similar Datasets

| S-EPMC2885752 | biostudies-literature
| S-EPMC3911017 | biostudies-literature
| S-EPMC3590792 | biostudies-literature
| S-EPMC1636140 | biostudies-literature
| S-EPMC93613 | biostudies-literature
| S-EPMC3525142 | biostudies-literature
| S-EPMC2984162 | biostudies-literature
| S-EPMC1214629 | biostudies-literature
| S-EPMC204532 | biostudies-other
| S-EPMC3209000 | biostudies-literature