Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation.
Ontology highlight
ABSTRACT: Production of mature erythrocytes requires multiple growth factors, but we do not know how their actions are coordinated. Here we show that erythroid progenitors from erythropoietin receptor (Epo-R)-/- fetal livers, infected in vitro with a retrovirus expressing the wild-type Epo-R, require addition of both Epo and stem cell factor (SCF) to form colony-forming unit erythroid (CFU-E) colonies. Thus, a functional interaction between KIT and the Epo-R, similar to what we reported in cultured cells, is essential for the function of CFU-E progenitors. In contrast, CFU-E colony formation in vitro by normal fetal liver progenitors requires only Epo; the essential interaction between activated KIT and the Epo-R must have occurred in vivo before or at the CFU-E progenitor stage. Using truncated dominant-negative mutant Epo-Rs, we show that KIT does not activate the Epo-R by inducing its dimerization, but presumably does so by phosphorylating tyrosine residue(s) in its cytosolic domain. By expressing mutant Epo-Rs containing only one of eight cytosolic tyrosines, we show that either tyrosine residue Y464 or Y479 suffices for Epo-dependent cell proliferation. However, only Epo-R F7Y479 is capable of supporting erythroid colony formation when expressed in (Epo-R)-/- fetal liver cells, indicating that Y464 either cannot send a differentiation signal or fails to respond to SCF/KIT activation. This work employs a novel experimental system to study the function of growth factors and their receptors in normal hematopoiesis.
SUBMITTER: Wu H
PROVIDER: S-EPMC19998 | biostudies-other | 1997 Mar
REPOSITORIES: biostudies-other
ACCESS DATA