Intraplantar PGE2 causes nociceptive behaviour and mechanical allodynia: the role of prostanoid E receptors and protein kinases.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE: Receptor subtypes involved in PGE(2)-induced nociception are still controversial. The present study investigated the prostanoid E receptor (EP) subtypes and the protein kinase (PK) pathways involved in the nociception induced by PGE(2) injection in the mouse paw. EXPERIMENTAL APPROACH: Paw-licking and mechanical allodynia were measured in vivo and protein kinase activation ex vivo by Western blots of extracts of paw skin. KEY RESULTS: Intraplantar (i.pl.) injection of PGE(2) into the mouse paw caused nociceptive behaviour of short duration with mean ED(50) of 1.43 nmol. PGE(2) produced a longer-lasting mechanical allodynia, with an ED(50) of 0.05 nmol. Intraplantar injection of antagonists at EP(3) or EP(4), but not at EP(1) or EP(2) receptors inhibited PGE(2)-induced paw-licking. Paw-licking caused by PGE(2) was blocked by an inhibitor of PKA but only partially decreased by inhibition of the extracellular-regulated kinase (ERK). Selective inhibitors of PKC, c-Jun N-terminal kinase (JNK) or p38, all failed to affect PGE(2)-induced paw-licking. An EP(3) antagonist inhibited PGE(2)-induced mechanical allodynia. However, inhibitors of PKA, PKC or ERK, but not p38 or JNK, also partially inhibited PGE(2)-induced mechanical allodynia. Western blot analyses confirmed that i.pl. injection of PGE(2) activated PKA, PKCalpha, and mitogen activated kinases (MAPKs) in the paw. Co-treatment with EP(3) or EP(4) receptor antagonists reduced PGE(2)-induced PKA and ERK, but not PKCalpha activation. CONCLUSIONS AND IMPLICATIONS: The present results indicate that the nociceptive behaviour and mechanical allodynia caused by i.pl. PGE(2) are mediated through activation of distinct EP receptors and PK-dependent mechanisms.
SUBMITTER: Kassuya CA
PROVIDER: S-EPMC2013868 | biostudies-other | 2007 Mar
REPOSITORIES: biostudies-other
ACCESS DATA