Isolation and analysis of eight exe genes and their involvement in extracellular protein secretion and outer membrane assembly in Aeromonas hydrophila.
Ontology highlight
ABSTRACT: The exeE gene of Aeromonas hydrophila has been shown to be required for the secretion of most if not all of the extracellular proteins produced by this bacterium. In addition, an exeE::Tn5-751 insertion mutant of A. hydrophila was found to be deficient in the amounts of a number of its major outer membrane proteins (B. Jiang and S. P. Howard, J. Bacteriol. 173:1241-1249, 1991). The exeE gene and the exeF gene were previously isolated as part of a fragment which complemented this mutant. In this study, we have isolated and sequenced a further eight exe genes, exeG through exeN, which constitute the 3' end of the exe operon. These genes have a high degree of similarity with the extracellular secretion operons of a number of different gram-negative bacteria. Marker exchange mutagenesis was used to insert kanamycin resistance cassettes into three different regions of the exe operon. The phenotypes of these mutants showed that in A. hydrophila this operon is required not only for extracellular protein secretion but also for normal assembly of the outer membrane, in particular with respect to the quantities of the major porins. Five of the Exe proteins contain type IV prepilin signal sequences, although the prepilin peptidase gene does not appear to form part of the exe operon. Limited processing of the ExeG protein was observed when it was expressed in Escherichia coli, and this processing was greatly accelerated in the presence of the prepilin peptidase of Pseudomonas aeruginosa.
SUBMITTER: Howard SP
PROVIDER: S-EPMC206782 | biostudies-other | 1993 Oct
REPOSITORIES: biostudies-other
ACCESS DATA