Structure of the rhsA locus from Escherichia coli K-12 and comparison of rhsA with other members of the rhs multigene family.
Ontology highlight
ABSTRACT: The complete nucleotide sequence of the rhsA locus and selected portions of other members of the rhs multigene family of Escherichia coli K-12 have been determined. A definition of the limits of the rhsA and rhsC loci was established by comparing sequences from E. coli K-12 with sequences from an independent E. coli isolate whose DNA contains no homology to the rhs core. This comparison showed that rhsA comprises 8,249 base pairs (bp) in strain K-12 and that the Rhs0 strain, instead, contains an unrelated 32-bp sequence. Similarly, the K-12 rhsC locus is 9.6 kilobases in length and a 10-bp sequence resides at its location in the Rhs0 strain. The rhsA core, the highly conserved portion shared by all rhs loci, comprises a single open reading frame (ORF) 3,714 bp in length. The nucleotide sequence of the core ORF predicts an extremely hydrophilic 141-kilodalton peptide containing 28 repeats of a motif whose consensus is GxxxRYxYDxxGRL(I or T). One of the most novel aspects of the rhs family is the extension of the core ORF into the divergent adjacent region. Core extensions of rhsA, rhsB, rhsC, and rhsD add 139, 173, 159, and 177 codons to the carboxy termini of the respective core ORFs. For rhsA, the extended core protein would have a molecular mass of 156 kilodaltons. Core extensions of rhsB and rhsD are related, exhibiting 50.3% conservation of the predicted amino acid sequence. However, comparison of the core extensions of rhsA and rhsC at both the nucleotide and the predicted amino acid level reveals that each is highly divergent from the other three rhs loci. The highly divergent portion of the core extension is joined to the highly conserved core by a nine-codon segment of intermediate conservation. The rhsA and rhsC loci both contain partial repetitions of the core downstream from their primary cores. The question of whether the rhs loci should be considered accessory genetic elements is discussed but not resolved.
SUBMITTER: Feulner G
PROVIDER: S-EPMC208451 | biostudies-other | 1990 Jan
REPOSITORIES: biostudies-other
ACCESS DATA