Analysis of the primary sequence and microtubule-binding region of the Drosophila 205K MAP.
Ontology highlight
ABSTRACT: We have sequenced cDNA clones encoding the Drosophila 205K microtubule-associated protein (MAP), a protein that may be the species specific homologue of mammalian MAP4. The peptide sequence deduced from the longest open-reading frame reveals a hydrophilic protein, which has basic and acidic regions that are similar in organization to mammalian MAP2. Using truncated forms of the 205K MAP, a 232-amino acid region could be defined that is necessary for microtubule binding. The amino acid sequence of this region shares no similarity with the binding motif of MAP2 or tau. We also analyzed several embryonic cDNA clones, which show the existence of differentially spliced mRNAs. Finally, we identified several potential protein kinase target sequences. One of these is distal to the microtubule-binding site and fits the phosphorylation consensus sequence of proteins phosphorylated by the mitosis specific protein kinase cdc2. Our data suggest that the 205K MAP uses a microtubule-binding motif unlike that found in other MAPs, and also raise the possibility that the activities of the 205K MAP may be regulated by alternative splicing and phosphorylation.
SUBMITTER: Irminger-Finger I
PROVIDER: S-EPMC2116399 | biostudies-other | 1990 Dec
REPOSITORIES: biostudies-other
ACCESS DATA