Analysis of five presumptive protein-coding sequences clustered between the primosome genes, 41 and 61, of bacteriophages T4, T2, and T6.
Ontology highlight
ABSTRACT: In bacteriophage T4, there is a strong tendency for genes that encode interacting proteins to be clustered on the chromosome. There is 1.6 kb of DNA between the DNA helicase (gene 41) and the DNA primase (gene 61) genes of this virus. The DNA sequence of this region suggests that it contains five genes, designated as open reading frames (ORFs) 61.1 to 61.5, predicted to encode proteins ranging in size from 5.94 to 22.88 kDa. Are these ORFs actually genes? As one test, we compared the DNA sequence of this region in bacteriophages T2, T4, and T6 and found that ORFs 61.1, 61.3, 61.4, and 61.5 are highly conserved among the three closely related viruses. In contrast, ORF 61.2 is conserved between phages T4 and T6 yet is absent from phage T2, where it is replaced by another ORF, T2 ORF 61.2, which is not found in the T4 and T6 genomes. As a second, independent test for coding sequences, we calculated the codon base position preferences for all ORFs in this region that could encode proteins that contain at least 30 amino acids. Both the T4/T6 and T2 versions of ORF 61.2, as well as the other ORFs, have codon base position preferences that are indistinguishable from those of known T4 genes (coefficients of 0.81 to 0.94); the six other possible ORFs of at least 90 bp in this region are ruled out as genes by this test (coefficients less than zero). Thus, both evolutionary conservation and codon usage patterns lead us to conclude that ORFs 61.1 to 61.5 represent important protein-coding sequences for this family of bacteriophages. Because they are located between the genes that encode the two interacting proteins of the T4 primosome (DNA helicase plus DNA primase), one or more may function in DNA replication by modulating primosome function.
SUBMITTER: Selick HE
PROVIDER: S-EPMC240378 | biostudies-other | 1993 Apr
REPOSITORIES: biostudies-other
ACCESS DATA