Looking for robust properties in the growth of an academic network: the case of the Uruguayan biological research community.
Ontology highlight
ABSTRACT: Graph-theoretical methods have recently been used to analyze certain properties of natural and social networks. In this work, we have investigated the early stages in the growth of a Uruguayan academic network, the Biology Area of the Programme for the Development of Basic Science (PEDECIBA). This transparent social network is a territory for the exploration of the reliability of clustering methods that can potentially be used when we are confronted with opaque natural systems that provide us with a limited spectrum of observables (happens in research on the relations between brain, thought and language). From our social net, we constructed two different graph representations based on the relationships among researchers revealed by their co-participation in Master's thesis committees. We studied these networks at different times and found that they achieve connectedness early in their evolution and exhibit the small-world property (i.e. high clustering with short path lengths). The data seem compatible with power law distributions of connectivity, clustering coefficients and betweenness centrality. Evidence of preferential attachment of new nodes and of new links between old nodes was also found in both representations. These results suggest that there are topological properties observed throughout the growth of the network that do not depend on the representations we have chosen but reflect intrinsic properties of the academic collective under study. Researchers in PEDECIBA are classified according to their specialties. We analysed the community structure detected by a standard algorithm in both representations. We found that much of the pre-specified structure is recovered and part of the mismatches can be attributed to convergent interests between scientists from different sub-disciplines. This result shows the potentiality of some clustering methods for the analysis of partially known natural systems.
SUBMITTER: Cabana A
PROVIDER: S-EPMC2577745 | biostudies-other | 2008 Apr
REPOSITORIES: biostudies-other
ACCESS DATA