Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells.
Ontology highlight
ABSTRACT: Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of beta(1)-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, beta(1)-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent beta(1)-integrin internalization. However, beta(1)-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized beta(1)-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased beta(1)-integrin endocytosis. Our data suggest that, in migrating IEC, beta(1)-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.
SUBMITTER: Vassilieva EV
PROVIDER: S-EPMC2584823 | biostudies-other | 2008 Nov
REPOSITORIES: biostudies-other
ACCESS DATA