Unknown

Dataset Information

0

Long-pore electrostatics in inward-rectifier potassium channels.


ABSTRACT: Inward-rectifier potassium (Kir) channels differ from the canonical K(+) channel structure in that they possess a long extended pore (approximately 85 A) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K(+) ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 A, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores.

SUBMITTER: Robertson JL 

PROVIDER: S-EPMC2585864 | biostudies-other | 2008 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Long-pore electrostatics in inward-rectifier potassium channels.

Robertson Janice L JL   Palmer Lawrence G LG   Roux Benoît B  

The Journal of general physiology 20081110 6


Inward-rectifier potassium (Kir) channels differ from the canonical K(+) channel structure in that they possess a long extended pore (approximately 85 A) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion al  ...[more]

Similar Datasets

| S-EPMC3884141 | biostudies-literature
| S-EPMC2233762 | biostudies-literature
| S-EPMC3059001 | biostudies-literature
| S-EPMC7149479 | biostudies-literature
| S-EPMC3414900 | biostudies-literature
| S-EPMC7034095 | biostudies-literature
| S-EPMC8995785 | biostudies-literature
| S-EPMC8462507 | biostudies-literature
| S-EPMC5899495 | biostudies-literature
| S-EPMC3823594 | biostudies-literature