Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly.
Ontology highlight
ABSTRACT: Gram-negative bacteria assemble functional amyloid surface fibers called curli. CsgB nucleates the major curli subunit protein, CsgA, into a self-propagating amyloid fiber on the cell surface. The CsgG lipoprotein is sufficient for curlin transport across the outer membrane and is hypothesized to be the central molecule of the curli fiber secretion and assembly complex. We tested the hypothesis that the curli secretion protein, CsgG, was restricted to certain areas of the cell to promote the interaction of CsgA and CsgB during curli assembly. Here, electron microscopic analysis of curli-producing strains showed that relatively few cells in the population contacted curli fibers and that curli emanated from spatially discrete points on the cell surface. Microscopic analysis revealed that CsgG was surface exposed and spatially clustered around curli fibers. CsgG localization to the outer membrane and exposure of the surface domain were not dependent on any other csg-encoded protein, but the clustering of CsgG required the csg-encoded proteins CsgE, CsgF, CsgA, and CsgB. CsgG formed stable oligomers in all the csg mutant strains, but these oligomers were distinct from the CsgG complexes assembled in wild-type cells. Finally, we found that efficient fiber assembly was required for the spatial clustering of CsgG. These results suggest a new model where curli fiber formation is spatially coordinated with the CsgG assembly apparatus.
SUBMITTER: Epstein EA
PROVIDER: S-EPMC2620823 | biostudies-other | 2009 Jan
REPOSITORIES: biostudies-other
ACCESS DATA