Unknown

Dataset Information

0

Amine-directed hydroboration: scope and limitations.


ABSTRACT: Iodine activation induces intramolecular hydroboration of homoallylic and bis-homoallylic amine boranes with good to excellent control of regiochemistry compared to control experiments using excess THF*BH 3. Deuterium labeling and other evidence confirm that the iodine-induced hydroboration reaction of homoallylic amine boranes occurs via an intramolecular mechanism equivalent to the classical 4-center process and without competing retro-hydroboration. Longer carbon chain tethers result in lower regioselectivity, whereas the shorter tether in allylic amines results in a switch to dominant intermolecular hydroboration. Regioselectivity in THF*BH 3 control experiments is higher for the allylic amine boranes compared to the iodine activation experiments, whereas the reverse is true for homoallylic amine borane activation.

SUBMITTER: Scheideman M 

PROVIDER: S-EPMC2646876 | biostudies-other | 2008 Jul

REPOSITORIES: biostudies-other

altmetric image

Publications

Amine-directed hydroboration: scope and limitations.

Scheideman Matthew M   Wang Guoqiang G   Vedejs Edwin E  

Journal of the American Chemical Society 20080613 27


Iodine activation induces intramolecular hydroboration of homoallylic and bis-homoallylic amine boranes with good to excellent control of regiochemistry compared to control experiments using excess THF*BH 3. Deuterium labeling and other evidence confirm that the iodine-induced hydroboration reaction of homoallylic amine boranes occurs via an intramolecular mechanism equivalent to the classical 4-center process and without competing retro-hydroboration. Longer carbon chain tethers result in lower  ...[more]