Unknown

Dataset Information

0

The Notochord, Notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation.


ABSTRACT: The growth regulating factor CTGF/CCN-2 is an integral factor in growth and development, connective tissue maintenance, wound repair and cell cycle regulation. It has recently been reported that CTGF/CCN-2 is involved in very early development having been detected in early notochord formation in zebrafish using CTGF/CCN-2 promoter-driven green fluorescent protein (GFP) plasmids. In these studies fluorescence was detected early in the developing embryos, a finding of considerable significance in that CTGF/CCN-2 deficient mutant mice die early after birth due to severe cartilage and skeletal dysplasia and respiratory failure. Such findings confirm the importance of CTGF/CCN-2 in development and of the necessary and sufficient role of this molecule in formation of the skeleton, extracellular matrix and chondrogenesis. Of particular relevance to the relationship between the notochordal cell and CTGF/CCN-2 there is a remarkable sub-species of canine, the 'non-chondrodystrophic' canine that is protected from developing degenerative disc disease (DDD). These animals are unique in that they preserve the population of notochordal cells within their disc nucleus (NP) and these cells secrete CTGF/CCN-2. We have detected CTGF/CCN-2 within conditioned medium developed from the notochordal cells of these animals (NCCM) and used this conditioned medium to demonstrate robustly increased proteoglycan production. The addition of recombinant human CTGF/CCN-2 to totally serum-free media containing cultures of bovine NP cells replicated the robustly increased aggrecan gene expression found with NCCM alone strongly suggesting the importance of the effect of CTGF/CCN-2 in notochordal cell biology within the disc nucleus of non-chondrodystrophic canines. The chondrodystrophic canine, another sub-species on the other hand are almost totally devoid of notochordal cells and they develop DDD profoundly and early. These two sub-species of canine reflect a naturally occurring animal model that is an excellent example of differential notochordal cell survival and possible associated developmental differences in extracellular maintenance.

SUBMITTER: Erwin WM 

PROVIDER: S-EPMC2648046 | biostudies-other | 2008 Dec

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC5021113 | biostudies-literature
| S-EPMC2760594 | biostudies-literature
| S-EPMC8406538 | biostudies-literature
| S-EPMC4579636 | biostudies-other
| S-EPMC3440760 | biostudies-literature
| S-EPMC8156781 | biostudies-literature
| S-EPMC10405234 | biostudies-literature
| S-EPMC3836692 | biostudies-literature
| S-EPMC6197658 | biostudies-literature
| S-EPMC2695716 | biostudies-literature