Unknown

Dataset Information

0

Ligand selectivity and gene regulation by the human aryl hydrocarbon receptor in transgenic mice.


ABSTRACT: The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that displays interspecies differences with the human and mouse AHR C-terminal region sequences sharing only 58% amino acid sequence identity. Compared with the mouse AHR (mAHR), the human AHR (hAHR) displays approximately 10-fold lower relative affinity for prototypical AHR ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, which has been attributed to the amino acid residue valine 381 (alanine 375 in the mAHR) in the ligand binding domain of the hAHR. We investigated whether the 10-fold difference in ligand-binding affinity between the mAHR and hAHR would be observed with a diverse range of AHR ligands. To test this hypothesis, ligand binding assays were performed using the photo-affinity ligand 2-azido-3-[(125)I]iodo-7,8-dibromodibenzo-p-dioxin and liver cytosol isolated from hepatocyte-specific transgenic hAHR mice and C57BL/6J mice. It is noteworthy that competitive ligand-binding assays revealed that, compared with the mAHR, the hAHR has a higher relative affinity for certain compounds, including indirubin [(2Z)-2,3-biindole-2,3 (1'H,1'H)-dione and quercetin (2-(3,4dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one]. Electrophoretic mobility shift assays revealed that indirubin was more efficient at transforming the hAHR compared with the mAHR. Indirubin was also a more potent inducer of Cyp1a1 expression in transgenic hAHR mouse hepatocytes compared with C57BL/6J mouse hepatocytes. These observations suggest that indirubin is a potent hAHR ligand that is able to selectively bind to and activate the hAHR. These discoveries imply that there may be a significant degree of structural divergence between mAHR and hAHR ligands and highlights the importance of the hAHR transgenic mouse as a model to study the hAHR in vivo.

SUBMITTER: Flaveny CA 

PROVIDER: S-EPMC2684888 | biostudies-other | 2009 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

Ligand selectivity and gene regulation by the human aryl hydrocarbon receptor in transgenic mice.

Flaveny Colin A CA   Murray Iain A IA   Chiaro Chris R CR   Perdew Gary H GH  

Molecular pharmacology 20090319 6


The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that displays interspecies differences with the human and mouse AHR C-terminal region sequences sharing only 58% amino acid sequence identity. Compared with the mouse AHR (mAHR), the human AHR (hAHR) displays approximately 10-fold lower relative affinity for prototypical AHR ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, which has been attributed to the amino acid residue valine 381 (alanine 375 in the mAHR) in  ...[more]

Similar Datasets

| S-EPMC2840214 | biostudies-literature
| S-EPMC3945671 | biostudies-literature
| S-EPMC408011 | biostudies-other
| S-EPMC3011047 | biostudies-literature
| S-EPMC4842109 | biostudies-literature
| S-EPMC4341842 | biostudies-literature
| S-EPMC5760495 | biostudies-literature
| S-EPMC2812074 | biostudies-literature
| S-EPMC9585082 | biostudies-literature
| S-EPMC2621304 | biostudies-literature