Unknown

Dataset Information

0

Dramatic effect of single-base mutation on the conformational dynamics of human telomeric G-quadruplex.


ABSTRACT: Guanine-rich DNA sequences can form G-quadruplexes. These four-stranded structures are known to form in several genomic regions and to influence certain biological activities. Sometimes, the instability of G-quadruplexes causes the abnormal biological processes. Mutation is a culprit for the destabilization of G-quadruplexes, but the details of mutated G-quadruplexes are poorly understood. In this article, we investigated the conformational dynamics of single-base mutated human telomeric G-quadruplexes in the presence of K(+) with single-molecule FRET spectroscopy. We observed that the replacement of single guanine by thymine in a G-track induces various folded structures, i.e. structural polymorphism. Moreover, direct observation of their dynamics revealed that a single-base mutation causes fast unfolding of folded states under physiological conditions. Furthermore, we found that the degree of destabilization varies according to mutation positions. When the central guanine of a G-track is replaced, the G-quadruplexes unfold quickly at any K(+) concentrations and temperature. Meanwhile, outer-quartet mutated G-quadruplexes have heterogeneous dynamics at intermediate K(+) concentrations and longstanding folded states at high K(+) concentrations. Several factors such as base-stacking interaction and K(+) coordination are responsible for the different dynamics according to the mutation position.

SUBMITTER: Lee JY 

PROVIDER: S-EPMC2699503 | biostudies-other | 2009 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

Dramatic effect of single-base mutation on the conformational dynamics of human telomeric G-quadruplex.

Lee Ja Yil JY   Kim D S DS  

Nucleic acids research 20090409 11


Guanine-rich DNA sequences can form G-quadruplexes. These four-stranded structures are known to form in several genomic regions and to influence certain biological activities. Sometimes, the instability of G-quadruplexes causes the abnormal biological processes. Mutation is a culprit for the destabilization of G-quadruplexes, but the details of mutated G-quadruplexes are poorly understood. In this article, we investigated the conformational dynamics of single-base mutated human telomeric G-quadr  ...[more]

Similar Datasets

| S-EPMC4705662 | biostudies-literature
| S-EPMC3575793 | biostudies-literature
| S-EPMC3738534 | biostudies-literature
| S-EPMC2426654 | biostudies-literature
| S-EPMC4117794 | biostudies-literature
| S-EPMC6044606 | biostudies-literature
| S-EPMC2756376 | biostudies-literature
| S-EPMC8674823 | biostudies-literature
| S-EPMC299749 | biostudies-literature
| S-EPMC2556180 | biostudies-literature