ABSTRACT: Innate immunity is part of the antiviral response. Interferon (IFN)-beta plays a leading role in this system. To investigate the influence of hepatitis C virus (HCV) on innate immunity, we examined the effect of viral proteins on IFN-beta induction. HepG2 cells were co-transfected with plasmids for seven HCV proteins (core protein, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) and the IFN-beta promoter luciferase. Toll-like receptor (TLR) 3 and Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF) play key roles in dsRNA-mediated activation of interferon regulatory factor (IRF)-3 and IFN-beta; therefore, the participation of TLR3/TRIF in NS5B-mediated IFN induction was examined. Among seven HCV proteins, only NS5B, a viral RNA-dependent RNA polymerase (RdRp), activated the IFN-beta promoter. However, mutant NS5B without RdRp activity or template/primer association did not activate the IFN-beta promoter. Activation of the IFN-beta promoter by NS5B required the positive regulatory domain III, a binding sequence for IRF-3. Moreover, IRF-3 was phosphorylated by NS5B. Both inhibition of TLR3 expression by small interfering RNA and expression of the dominant negative form of TRIF significantly reduced NS5B-induced activation of IFN-beta. Of the six other HCV proteins, NS4A, NS4B, and NS5A efficiently inhibited this activation. HCV NS5B is a potent activator of the host innate immune system, possibly through TLR3/TRIF and synthesis of dsRNA. Meanwhile, NS4A, NS4B, and NS5A block IFN-beta induction by NS5B, which may contribute toward the persistence of this virus.