Unknown

Dataset Information

0

Sparsification of neuronal activity in the visual cortex at eye-opening.


ABSTRACT: Eye-opening represents a turning point in the function of the visual cortex. Before eye-opening, the visual cortex is largely devoid of sensory inputs and neuronal activities are generated intrinsically. After eye-opening, the cortex starts to integrate visual information. Here we used in vivo two-photon calcium imaging to explore the developmental changes of the mouse visual cortex by analyzing the ongoing spontaneous activity. We found that before eye-opening, the activity of layer 2/3 neurons consists predominantly of slow wave oscillations. These waves were first detected at postnatal day 8 (P8). Their initial very low frequency (0.01 Hz) gradually increased during development to approximately 0.5 Hz in adults. Before eye-opening, a large fraction of neurons (>75%) was active during each wave. One day after eye-opening, this dense mode of recruitment changed to a sparse mode with only 36% of active neurons per wave. This was followed by a progressive decrease during the following weeks, reaching 12% of active neurons per wave in adults. The possible role of visual experience for this process of sparsification was investigated by analyzing dark-reared mice. We found that sparsification also occurred in these mice, but that the switch from a dense to a sparse activity pattern was delayed by 3-4 days as compared with normally-reared mice. These results reveal a modulatory contribution of visual experience during the first days after eye-opening, but an overall dominating role of intrinsic factors. We propose that the transformation in network activity from dense to sparse is a prerequisite for the changed cortical function at eye-opening.

SUBMITTER: Rochefort NL 

PROVIDER: S-EPMC2736444 | biostudies-other | 2009 Sep

REPOSITORIES: biostudies-other

altmetric image

Publications

Sparsification of neuronal activity in the visual cortex at eye-opening.

Rochefort Nathalie L NL   Garaschuk Olga O   Milos Ruxandra-Iulia RI   Narushima Madoka M   Marandi Nima N   Pichler Bruno B   Kovalchuk Yury Y   Konnerth Arthur A  

Proceedings of the National Academy of Sciences of the United States of America 20090814 35


Eye-opening represents a turning point in the function of the visual cortex. Before eye-opening, the visual cortex is largely devoid of sensory inputs and neuronal activities are generated intrinsically. After eye-opening, the cortex starts to integrate visual information. Here we used in vivo two-photon calcium imaging to explore the developmental changes of the mouse visual cortex by analyzing the ongoing spontaneous activity. We found that before eye-opening, the activity of layer 2/3 neurons  ...[more]

Similar Datasets

| S-EPMC11230236 | biostudies-literature
| S-EPMC5746341 | biostudies-literature
| S-EPMC3081541 | biostudies-literature
| S-EPMC2553692 | biostudies-literature
| S-EPMC4575691 | biostudies-literature
| S-EPMC4518215 | biostudies-literature
| S-EPMC2322861 | biostudies-literature
| S-EPMC5907345 | biostudies-literature
| S-EPMC298773 | biostudies-literature
| S-EPMC10543111 | biostudies-literature