Unknown

Dataset Information

0

Group-wise Point-set registration using a novel CDF-based Havrda-Charvat Divergence.


ABSTRACT: This paper presents a novel and robust technique for group-wise registration of point sets with unknown correspondence. We begin by defining a Havrda-Charvát (HC) entropy valid for cumulative distribution functions (CDFs) which we dub the HC Cumulative Residual Entropy (HC-CRE). Based on this definition, we propose a new measure called the CDF-HC divergence which is used to quantify the dis-similarity between CDFs estimated from each point-set in the given population of point sets. This CDF-HC divergence generalizes the CDF based Jensen-Shannon (CDF-JS) divergence introduced earlier in the literature, but is much simpler in implementation and computationally more efficient.A closed-form formula for the analytic gradient of the cost function with respect to the non-rigid registration parameters has been derived, which is conducive for efficient quasi-Newton optimization. Our CDF-HC algorithm is especially useful for unbiased point-set atlas construction and can do so without the need to establish correspondences. Mathematical analysis and experimental results indicate that this CDF-HC registration algorithm outperforms the previous group-wise point-set registration algorithms in terms of efficiency, accuracy and robustness.

SUBMITTER: Chen T 

PROVIDER: S-EPMC2835416 | biostudies-other | 2010 Jan

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7647120 | biostudies-literature
| S-EPMC4912139 | biostudies-literature
| S-EPMC6469499 | biostudies-literature
| S-EPMC6995446 | biostudies-literature
| S-EPMC7507133 | biostudies-literature
| S-EPMC4903920 | biostudies-literature
| S-EPMC5703502 | biostudies-other
| S-EPMC5969772 | biostudies-literature
| S-EPMC7485869 | biostudies-literature
| S-EPMC6303034 | biostudies-literature