Unknown

Dataset Information

0

Engineering Corynebacterium glutamicum for isobutanol production.


ABSTRACT: The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host's sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by approximately 25% to 4.9 g/L isobutanol in a pycldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways.

SUBMITTER: Smith KM 

PROVIDER: S-EPMC2886118 | biostudies-other | 2010 Jul

REPOSITORIES: biostudies-other

altmetric image

Publications

Engineering Corynebacterium glutamicum for isobutanol production.

Smith Kevin Michael KM   Cho Kwang-Myung KM   Liao James C JC  

Applied microbiology and biotechnology 20100408 3


The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host's sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of al  ...[more]

Similar Datasets

| S-EPMC6138892 | biostudies-other
2013-11-26 | GSE52737 | GEO
2013-11-26 | E-GEOD-52737 | biostudies-arrayexpress
| S-EPMC8922798 | biostudies-literature
| S-EPMC5940623 | biostudies-literature
| S-EPMC9753420 | biostudies-literature
2016-03-30 | GSE79690 | GEO
2016-03-30 | E-GEOD-79690 | biostudies-arrayexpress
| S-EPMC5054628 | biostudies-literature
| S-EPMC4495370 | biostudies-literature