Detection of susceptibility genes as modifiers due to subgroup differences in complex disease.
Ontology highlight
ABSTRACT: Complex diseases invariably involve multiple genes and often exhibit variable symptom profiles. The extent to which disease symptoms, course, and severity differ between affected individuals may result from underlying genetic heterogeneity. Genes with modifier effects may or may not also influence disease susceptibility. In this study, we have simulated data in which a subset of cases differ by some effect size (ES) on a quantitative trait and are also enriched for a risk allele. Power to detect this 'pseudo-modifier' gene in case-only and case-control designs was explored blind to case substructure. Simulations involved 1000 iterations and calculations for 80% power at P<0.01 while varying the risk allele frequency (RAF), sample size (SS), ES, odds ratio (OR), and proportions of the case subgroups. With realistic values for the RAF (0.20), SS (3000) and ES (1), an OR of 1.7 is necessary to detect a pseudo-modifier gene. Unequal numbers of subjects in the case groups result in little decrement in power until the group enriched for the risk allele is <30% or >70% of the total case population. In practice, greater numbers of subjects and selection of a quantitative trait with a large range will provide researchers with greater power to detect a pseudo-modifier gene. However, even under ideal conditions, studies involving alleles with low frequencies or low ORs are usually underpowered for detection of a modifier or susceptibility gene. This may explain some of the inconsistent association results for many candidate gene studies of complex diseases.
SUBMITTER: Bergen SE
PROVIDER: S-EPMC2896458 | biostudies-other | 2010 Aug
REPOSITORIES: biostudies-other
ACCESS DATA