Effect of network topology on neuronal encoding based on spatiotemporal patterns of spikes.
Ontology highlight
ABSTRACT: Despite significant progress in our understanding of the brain at both microscopic and macroscopic scales, the mechanisms by which low-level neuronal behavior gives rise to high-level mental processes such as memory still remain unknown. In this paper, we assess the plausibility and quantify the performance of polychronization, a newly proposed mechanism of neuronal encoding, which has been suggested to underlie a wide range of cognitive phenomena. We then investigate the effect of network topology on the reliability with which input stimuli can be distinguished based on their encoding in the form of so-called polychronous groups or spatiotemporal patterns of spikes. We find that small-world networks perform an order of magnitude better than random ones, enabling reliable discrimination between inputs even when prompted by increasingly incomplete recall cues. Furthermore, we show that small-world architectures operate at significantly reduced energetic costs and that their memory capacity scales favorably with network size. Finally, we find that small-world topologies introduce biologically realistic constraints on the optimal input stimuli, favoring especially the topographic inputs known to exist in many cortical areas. Our results suggest that mammalian cortical networks, by virtue of being both small-world and topographically organized, seem particularly well-suited to information processing through polychronization. This article addresses the fundamental question of encoding in neuroscience. In particular, evidence is presented in support of an emerging model of neuronal encoding in the neocortex based on spatiotemporal patterns of spikes.
SUBMITTER: Vertes PE
PROVIDER: S-EPMC2929633 | biostudies-other | 2010 Jun
REPOSITORIES: biostudies-other
ACCESS DATA