Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor.
Ontology highlight
ABSTRACT: Gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptor superfamily, has been utilized for receptor-mediated targeting of imaging and therapeutic agents; here we extend its use to oligonucleotide delivery. A splice-shifting antisense oligonucleotide was conjugated to a bombesin (BBN) peptide, and its intracellular delivery was tested in GRPR expressing PC3 cells stably transfected with a luciferase gene interrupted by an abnormally spliced intron. The BBN-conjugate produced significantly higher luciferase expression compared to unmodified oligonucleotide, and this increase was reversed by excess BBN peptide. Kinetic studies revealed a combination of saturable, receptor-mediated endocytosis and non-saturable pinocytosis for uptake of the conjugate. The K(m) value for saturable uptake was similar to the EC(50) value for the pharmacological response, indicating that receptor-mediated endocytosis was a primary contributor to the response. Use of pharmacological and molecular inhibitors of endocytosis showed that the conjugate utilized a clathrin-, actin- and dynamin-dependent pathway to enter PC3 cells. The BBN-conjugate partially localized in endomembrane vesicles that were associated with Rab7 or Rab9, demonstrating that it was transported to late endosomes and the trans-golgi network. These observations suggest that the BBN-oligonucleotide conjugate enters cells via a process of GRPR mediated endocytosis followed by trafficking to deep endomembrane compartments.
SUBMITTER: Ming X
PROVIDER: S-EPMC2965246 | biostudies-other | 2010 Oct
REPOSITORIES: biostudies-other
ACCESS DATA