Unknown

Dataset Information

0

Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables.


ABSTRACT: BACKGROUND: The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. METHODS: Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. RESULTS: The Welch U test (the T test with adjustment for unequal variances) and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group). The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. CONCLUSIONS: The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.

SUBMITTER: Fagerland MW 

PROVIDER: S-EPMC3097007 | biostudies-other | 2011

REPOSITORIES: biostudies-other

altmetric image

Publications

Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables.

Fagerland Morten W MW   Sandvik Leiv L   Mowinckel Petter P  

BMC medical research methodology 20110413


<h4>Background</h4>The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables.<h4>Methods</h4>Two simulation studies  ...[more]

Similar Datasets

| S-EPMC9244047 | biostudies-literature
| S-EPMC9122192 | biostudies-literature
| S-EPMC6224093 | biostudies-literature
| S-EPMC3886575 | biostudies-literature
| S-EPMC11265457 | biostudies-literature
| S-EPMC6237353 | biostudies-literature
| S-EPMC4829178 | biostudies-literature
| S-EPMC7718470 | biostudies-literature
| S-EPMC6481558 | biostudies-literature
| S-EPMC8740504 | biostudies-literature