Unknown

Dataset Information

0

Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting.


ABSTRACT: Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect formation of these pathways in vivo remain mostly unknown. Here, we determine the embryonic origin and ontogeny of the mouse mesoprefrontal pathway and use these data to reveal an unexpected requirement for semaphorin 3F (Sema3F) and its receptor neuropilin-2 (Npn-2) during mdDA pathway development using tissue culture approaches and analysis of sema3F(-/-), npn-2(-/-), and npn-2(-/-);TH-Cre mice. We show that Sema3F is a bifunctional guidance cue for mdDA axons, some of which have the remarkable ability to regulate their responsiveness to Sema3F as they develop. During early developmental stages, Sema3F chemorepulsion controls previously uncharacterized aspects of mdDA pathway development through both Npn-2-dependent (axon fasciculation and channeling) and Npn-2-independent (rostral growth) mechanisms. Later on, chemoattraction mediated by Sema3F and Npn-2 is required to orient mdDA axon projections in the cortical plate of the medial prefrontal cortex. This latter finding demonstrates that regulation of axon orientation in the target field occurs by chemoattractive mechanisms, and this is likely to also apply to other neural systems. In all, this study provides a framework for additional dissection of the molecular basis of mdDA pathway development and disease.

SUBMITTER: Kolk SM 

PROVIDER: S-EPMC3097132 | biostudies-other | 2009 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting.

Kolk Sharon M SM   Gunput Rou-Afza F RA   Tran Tracy S TS   van den Heuvel Dianne M A DM   Prasad Asheeta A AA   Hellemons Anita J C G M AJ   Adolfs Youri Y   Ginty David D DD   Kolodkin Alex L AL   Burbach J Peter H JP   Smidt Marten P MP   Pasterkamp R Jeroen RJ  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20091001 40


Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect form  ...[more]

Similar Datasets

| S-EPMC2647909 | biostudies-literature
| S-EPMC6665371 | biostudies-literature
2024-07-12 | GSE195825 | GEO
| S-EPMC3647027 | biostudies-literature
2024-07-12 | GSE201216 | GEO
| S-EPMC3888311 | biostudies-literature
| S-EPMC3113314 | biostudies-literature
| S-EPMC3283820 | biostudies-literature
| S-EPMC6389285 | biostudies-literature
| S-EPMC3981697 | biostudies-literature