Unknown

Dataset Information

0

T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters.


ABSTRACT: T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. Here we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC content within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. This threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.

SUBMITTER: Manz BN 

PROVIDER: S-EPMC3107331 | biostudies-other | 2011 May

REPOSITORIES: biostudies-other

altmetric image

Publications

T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters.

Manz Boryana N BN   Jackson Bryan L BL   Petit Rebecca S RS   Dustin Michael L ML   Groves Jay J  

Proceedings of the National Academy of Sciences of the United States of America 20110516 22


T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. Here we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, prov  ...[more]

Similar Datasets

| S-EPMC8670329 | biostudies-literature
| S-EPMC6035778 | biostudies-literature
| S-EPMC10123029 | biostudies-literature
| S-EPMC4601265 | biostudies-literature
| S-EPMC1223079 | biostudies-other
| S-EPMC9929642 | biostudies-literature
| S-EPMC6249037 | biostudies-literature
| S-EPMC7052162 | biostudies-literature
2010-10-25 | E-GEOD-11211 | biostudies-arrayexpress
| S-SCDT-10_15252-EMBJ_2022112030 | biostudies-other