Unknown

Dataset Information

0

Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803.


ABSTRACT: Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependent negative phototaxis in response to unidirectional UV-A illumination. Using a reverse genetic approach, together with biochemical, molecular genetic, and RNA expression profiling analyses, we show that the cyanobacteriochrome locus (slr1212/uirS) of Synechocystis and two adjacent response regulator loci (slr1213/uirR and the PatA-type regulator slr1214/lsiR) encode a UV-A-activated signaling system that is required for negative phototaxis. We propose that UirS, which is membrane-associated via its ETR1 domain, functions as a UV-A photosensor directing expression of lsiR via release of bound UirR, which targets the lsiR promoter. Constitutive expression of LsiR induces negative phototaxis under conditions that normally promote positive phototaxis. Also induced by other stresses, LsiR thus integrates light inputs from multiple photosensors to determine the direction of movement.

SUBMITTER: Song JY 

PROVIDER: S-EPMC3127908 | biostudies-other | 2011 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803.

Song Ji-Young JY   Cho Hye Sun HS   Cho Jung-Il JI   Jeon Jong-Seong JS   Lagarias J Clark JC   Park Youn-Il YI  

Proceedings of the National Academy of Sciences of the United States of America 20110613 26


Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependent n  ...[more]

Similar Datasets

| S-EPMC4010505 | biostudies-literature
| S-EPMC4836186 | biostudies-literature
| S-EPMC3190959 | biostudies-literature
| S-EPMC7174562 | biostudies-literature
| S-EPMC10516873 | biostudies-literature
| S-EPMC4963859 | biostudies-literature
| S-EPMC7344198 | biostudies-literature
| S-EPMC1064041 | biostudies-literature
| S-EPMC7801250 | biostudies-literature
2015-11-13 | GSE74940 | GEO