Unknown

Dataset Information

0

Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock.


ABSTRACT: In response to osmotic stress, global translation is inhibited, but the mRNAs encoding stress-protective proteins are selectively translated to allow cell survival. To date, the mechanisms and factors involved in the specific translation of osmostress-responsive genes in Saccharomyces cerevisiae are unknown. We find that the mRNA cap-binding protein Cbc1 is important for yeast survival under osmotic stress. Our results provide new evidence supporting a role of Cbc1 in translation initiation. Cbc1 associates with polysomes, while the deletion of the CBC1 gene causes hypersensitivity to the translation inhibitor cycloheximide and yields synthetic "sickness" in cells with limiting amounts of translation initiator factor eIF4E. In cbc1? mutants, translation drops sharply under osmotic stress, the subsequent reinitiation of translation is retarded, and "processing bodies" containing untranslating mRNAs remain for long periods. Furthermore, osmostress-responsive mRNAs are transcriptionally induced after osmotic stress in cbc1? cells, but their rapid association with polysomes is delayed. However, in cells containing a thermosensitive eIF4E allele, their inability to grow at 37ºC is suppressed by hyperosmosis, and Cbc1 relocalizes from nucleus to cytoplasm. These data support a model in which eIF4E-translation could be stress-sensitive, while Cbc1-mediated translation is necessary for the rapid translation of osmostress-protective proteins under osmotic stress.

SUBMITTER: Garre E 

PROVIDER: S-EPMC3248893 | biostudies-other | 2012 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock.

Garre Elena E   Romero-Santacreu Lorena L   De Clercq Nikki N   Blasco-Angulo Nati N   Sunnerhagen Per P   Alepuz Paula P  

Molecular biology of the cell 20111109 1


In response to osmotic stress, global translation is inhibited, but the mRNAs encoding stress-protective proteins are selectively translated to allow cell survival. To date, the mechanisms and factors involved in the specific translation of osmostress-responsive genes in Saccharomyces cerevisiae are unknown. We find that the mRNA cap-binding protein Cbc1 is important for yeast survival under osmotic stress. Our results provide new evidence supporting a role of Cbc1 in translation initiation. Cbc  ...[more]

Similar Datasets

| S-EPMC2168979 | biostudies-literature
| S-EPMC555522 | biostudies-literature
| S-EPMC5003174 | biostudies-literature
| S-EPMC6388641 | biostudies-literature
| S-EPMC3541521 | biostudies-literature
| S-EPMC1370693 | biostudies-literature
| S-EPMC6314167 | biostudies-literature
| S-EPMC3113551 | biostudies-literature
| S-EPMC7979924 | biostudies-literature
| S-EPMC5186766 | biostudies-literature