Unknown

Dataset Information

0

Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells.


ABSTRACT: Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the gene coding for FIBRILLIN-1 (FBN1), an extracellular matrix protein. MFS is inherited as an autosomal dominant trait and displays major manifestations in the ocular, skeletal, and cardiovascular systems. Here we report molecular and phenotypic profiles of skeletogenesis in tissues differentiated from human embryonic stem cells and induced pluripotent stem cells that carry a heritable mutation in FBN1. We demonstrate that, as a biological consequence of the activation of TGF-? signaling, osteogenic differentiation of embryonic stem cells with a FBN1 mutation is inhibited; osteogenesis is rescued by inhibition of TGF-? signaling. In contrast, chondrogenesis is not perturbated and occurs in a TGF-? cell-autonomous fashion. Importantly, skeletal phenotypes observed in human embryonic stem cells carrying the monogenic FBN1 mutation (MFS cells) are faithfully phenocopied by cells differentiated from induced pluripotent-stem cells derived independently from MFS patient fibroblasts. Results indicate a unique phenotype uncovered by examination of mutant pluripotent stem cells and further demonstrate the faithful alignment of phenotypes in differentiated cells obtained from both human embryonic stem cells and induced pluripotent-stem cells, providing complementary and powerful tools to gain further insights into human molecular pathogenesis, especially of MFS.

SUBMITTER: Quarto N 

PROVIDER: S-EPMC3252902 | biostudies-other | 2012 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells.

Quarto Natalina N   Leonard Brian B   Li Shuli S   Marchand Melanie M   Anderson Erica E   Behr Barry B   Francke Uta U   Reijo-Pera Renee R   Chiao Eric E   Longaker Michael T MT  

Proceedings of the National Academy of Sciences of the United States of America 20111216 1


Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the gene coding for FIBRILLIN-1 (FBN1), an extracellular matrix protein. MFS is inherited as an autosomal dominant trait and displays major manifestations in the ocular, skeletal, and cardiovascular systems. Here we report molecular and phenotypic profiles of skeletogenesis in tissues differentiated from human embryonic stem cells and induced pluripotent stem cells that carry a heritable mutation in FBN1. We d  ...[more]

Similar Datasets

| S-EPMC3276111 | biostudies-literature
| S-EPMC3202894 | biostudies-literature
| S-EPMC3261715 | biostudies-literature
| S-EPMC2955528 | biostudies-literature
| S-EPMC4581278 | biostudies-literature
| S-EPMC3037398 | biostudies-literature
| S-EPMC5737589 | biostudies-literature
| S-EPMC2998615 | biostudies-other
| S-EPMC4006482 | biostudies-literature
| S-EPMC6653499 | biostudies-literature