Unknown

Dataset Information

0

Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass.


ABSTRACT: The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C:P and N:P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N:C under N limitation and positively correlated with P:C under P limitation. However, the N:P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C:N:P stoichiometry. Furthermore, μ and C:N:P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.

SUBMITTER: Yu Q 

PROVIDER: S-EPMC3302800 | biostudies-other | 2012

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7706344 | biostudies-literature
| S-EPMC8500215 | biostudies-literature
| S-EPMC5003395 | biostudies-literature
| S-EPMC6237305 | biostudies-literature
| S-EPMC7756268 | biostudies-literature
| S-EPMC4540449 | biostudies-literature
| S-EPMC8598383 | biostudies-literature
| S-EPMC10769449 | biostudies-literature
2016-12-12 | E-MTAB-4808 | biostudies-arrayexpress
| S-EPMC7644536 | biostudies-literature