Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer.
Ontology highlight
ABSTRACT: Molecular apocrine is a subtype of estrogen receptor-negative (ER.) breast cancer, which is characterized by a steroid-response gene signature that includes androgen receptor, FOXA1, and a high frequency of ErbB2 overexpression. In this study, we demonstrate that there is a strong association between the overexpression of FOXA1 and ErbB2 in ER- breast tumors. This has led us to identify a cross-regulation network between FOXA1 and ErbB2 signaling in ER- breast cancer. We present two mechanisms to explain the association between FOXA1 and ErbB2 overexpression in molecular apocrine cells. In one process, ErbB2 signaling genes CREB1 and c-Fos regulate FOXA1 transcription, and in another process, AP2? regulates the expression of both FOXA1 and ErbB2. Moreover, we demonstrate that FOXA1, in turn, regulates the transcription of ErbB2 signaling genes. This includes a core gene signature that is shared across two molecular apocrine cell lines. Importantly, the most upregulated (RELB) and downregulated (PAK1) genes in this signature are direct FOXA1 targets. Our data suggest that FOXA1 acts as a dual-function transcription factor and the repressive function of FOXA1 on RELB can be explained by the recruitment of its binding partner corepressor TLE3. It is notable that a group of FOXA1-regulated genes vary across molecular apocrine cell lines leading to the differences in the functional effects of FOXA1 on extracellular signal-regulated kinase phosphorylation and cell viability between these lines. This study demonstrates that there is a cross-regulation network between FOXA1 and ErbB2 signaling that connects FOXA1 to some of the key signaling pathways in ER-breast cancer.
SUBMITTER: Naderi A
PROVIDER: S-EPMC3349255 | biostudies-other | 2012 Apr
REPOSITORIES: biostudies-other
ACCESS DATA