Value of the hemorrhage exclusion sign on T1-weighted prostate MR images for the detection of prostate cancer.
Ontology highlight
ABSTRACT: To retrospectively determine the prevalence and positive predictive value (PPV) of the hemorrhage exclusion sign on T1-weighted magnetic resonance (MR) images in conjunction with findings on T2-weighted images in the detection of prostate cancer, with use of whole-mount step-section pathologic specimens from prostatectomy as the reference standard.The institutional review board approved this retrospective study, which was compliant with HIPAA, and the requirement to obtain informed consent was waived. Two hundred ninety-two patients with biopsy-proved prostate cancer underwent endorectal MR imaging followed by prostatectomy. The hemorrhage exclusion sign was defined as the presence of a well-defined area of low signal intensity surrounded by areas of high signal intensity on T1-weighted images. Two readers independently assessed the presence and extent of postbiopsy changes and the hemorrhage exclusion sign. The presence of a corresponding area of homogeneous low signal intensity on T2-weighted images was also recorded. The prevalence and PPV of the hemorrhage exclusion sign were calculated.Readers 1 and 2 found postbiopsy changes in the peripheral zone in 184 (63%) and 189 (64.7%) of the 292 patients, respectively. In these patients, the hemorrhage exclusion sign was observed in 39 of 184 patients (21.2%) by reader 1 and 36 of 189 patients (19.0%) by reader 2. A corresponding area of homogeneous low signal intensity was seen on T2-weighted images in the same location as the hemorrhage exclusion sign in 23 of 39 patients (59%) by reader 1 and 19 of 36 patients (53%) by reader 2. The PPV of the hemorrhage exclusion sign alone was 56% (22 of 39 patients) for reader 1 and 50% (18 of 36 patients) for reader 2 but increased to 96% (22 of 23 patients) and 95% (18 of 19 patients) when the sign was identified in an area of homogeneous low signal intensity on T2-weighted images.Postbiopsy change is a known pitfall in the interpretation of T2-weighted images. The authors have shown that a potential benefit of postbiopsy change is the presence of excluded hemorrhage, which, in conjunction with a corresponding area of homogeneous low signal intensity at T2-weighted imaging, is highly accurate for cancer identification.
SUBMITTER: Barrett T
PROVIDER: S-EPMC3359512 | biostudies-other | 2012 Jun
REPOSITORIES: biostudies-other
ACCESS DATA