Manipulating single annealed polyelectrolyte under alternating current electric fields: Collapse versus accumulation.
Ontology highlight
ABSTRACT: Effective manipulation and understanding of the structural and dynamic behaviors of a single polyelectrolyte (PE) under alternating current (AC) electric fields are of great scientific and technological importance because of its intimate relevance to emerging bionanotechnology. In this work, we employ fluorescence correlation spectroscopy (FCS) to study the conformational and AC-electrokinetic behaviors of a model annealed PE, poly(2-vinyl pyridine) (P2VP) under both spatially uniform and non-uniform AC fields at a single molecule level. Under spatially uniform AC-fields, we observe a gradual and continuous coil-to-globule conformational transition (CGT) of single P2VP at varied AC-frequency when a critical AC-field strength is exceeded, in contrast to the pH-induced abrupt CGT in the absence of AC-fields. On the contrary, under spatially non-uniform AC-fields, we observe field-driven net flow and accumulation of P2VP near high AC-field regions due to combined AC electro-osmosis and dielectrophoresis but surprisingly no conformational change. Thus, distinct AC-electric polarization effect on single annealed PE subject to AC-field homogeneity is suggested.
SUBMITTER: Wang S
PROVIDER: S-EPMC3360728 | biostudies-other | 2012 Jun
REPOSITORIES: biostudies-other
ACCESS DATA