Fabrication of a gel particle array in a microfluidic device for bioassays of protein and glucose in human urine samples.
Ontology highlight
ABSTRACT: This paper describes a simple method for fabricating a series of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microstructures inside microfluidic channels as probe for proteins and glucose. In order to demonstrate the feasibility of this newly developed system, bovine serum albumin (BSA) was chosen as a model protein. PEG microcolumns were used for the parallel detection of multiple components. Using tetrabromophenol blue (TBPB) and the horseradish peroxidase/glucose oxidase reaction system, bovine serum albumin (BSA) and glucose in human urine were detected by color changes. The color changes for BSA within a concentration range of 1-150 μM, and glucose within a range of 50 mM-2 M could be directly distinguished by eyes or precisely identified by optical microscope. To show the practicability of the gel particle array, protein and glucose concentrations of real human urine samples were determined, resulting in a good correlation with hospital analysis. Notably, only a 5 µL sample was needed for a parallel measurement of both analytes. Conveniently, no special readout equipment or power source was required during the diagnosis process, which is promising for an application in rapid point-of-care diagnosis.
SUBMITTER: Lin L
PROVIDER: S-EPMC3364827 | biostudies-other | 2011 Sep
REPOSITORIES: biostudies-other
ACCESS DATA