Unknown

Dataset Information

0

Estimating statistical distributions using an integral identity.


ABSTRACT: We present an identity for an unbiased estimate of a general statistical distribution. The identity computes the distribution density from dividing a histogram sum over a local window by a correction factor from a mean-force integral, and the mean force can be evaluated as a configuration average. We show that the optimal window size is roughly the inverse of the local mean-force fluctuation. The new identity offers a more robust and precise estimate than a previous one by Adib and Jarzynski [J. Chem. Phys. 122, 014114 (2005)]. It also allows a straightforward generalization to an arbitrary ensemble and a joint distribution of multiple variables. Particularly we derive a mean-force enhanced version of the weighted histogram analysis method. The method can be used to improve distributions computed from molecular simulations. We illustrate the use in computing a potential energy distribution, a volume distribution in a constant-pressure ensemble, a radial distribution function, and a joint distribution of amino acid backbone dihedral angles.

SUBMITTER: Zhang C 

PROVIDER: S-EPMC3376154 | biostudies-other | 2012 May

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC3042576 | biostudies-literature
| S-EPMC5965647 | biostudies-literature
| S-EPMC5860108 | biostudies-literature
| S-EPMC4279603 | biostudies-other
| S-EPMC5243790 | biostudies-literature
| S-EPMC8181094 | biostudies-literature
| S-EPMC9120146 | biostudies-literature
| S-EPMC9097980 | biostudies-literature
| S-EPMC7515426 | biostudies-literature
| S-EPMC10769464 | biostudies-literature