Unknown

Dataset Information

0

Linear magnetoresistance in n-type silicon due to doping density fluctuations.


ABSTRACT: We report the observation of a large linear magnetoresistance in the ohmic regime in commonplace commercial n-type silicon wafer with a P dopant density of (1.4±0.1) ×10(15) cm(-3), and report measurements of it in the temperature range 30-200 K. It arises from the deformation of current paths, which causes a part of the Hall field to be detected at the voltage probes. In short, wide samples we found linear magnetoresistance as large as 4707% in an 8 tesla field at 35 K. Sample geometry effects like these are commonplace in commercial Hall sensors. However, we found that the effect persisted in long, thin samples where the macroscopic current flow should be uniform between the voltage probes: we observed a magnetoresistance of 445% under the same conditions as above. We interpret this result as arising due to spatial fluctuations in the donor density, in the spirit of the Herring model.

SUBMITTER: Porter NA 

PROVIDER: S-EPMC3413879 | biostudies-other | 2012

REPOSITORIES: biostudies-other

altmetric image

Publications

Linear magnetoresistance in n-type silicon due to doping density fluctuations.

Porter Nicholas A NA   Marrows Christopher H CH  

Scientific reports 20120808


We report the observation of a large linear magnetoresistance in the ohmic regime in commonplace commercial n-type silicon wafer with a P dopant density of (1.4±0.1) ×10(15) cm(-3), and report measurements of it in the temperature range 30-200 K. It arises from the deformation of current paths, which causes a part of the Hall field to be detected at the voltage probes. In short, wide samples we found linear magnetoresistance as large as 4707% in an 8 tesla field at 35 K. Sample geometry effects  ...[more]

Similar Datasets

| S-EPMC5768776 | biostudies-literature
| S-EPMC11342362 | biostudies-literature
| S-EPMC6874576 | biostudies-literature
| S-EPMC4814878 | biostudies-other
| S-EPMC6185961 | biostudies-literature
| S-EPMC3493639 | biostudies-other
| S-EPMC4892353 | biostudies-literature
| S-EPMC6954222 | biostudies-literature
| S-EPMC4555100 | biostudies-literature
| S-EPMC8319177 | biostudies-literature