Direct patterning of coplanar polyethylene glycol alkylsilane monolayers by deep-ultraviolet photolithography as a general method for high fidelity, long-term cell patterning and culture.
Ontology highlight
ABSTRACT: This manuscript details a general method for patterning coplanar alkylsilane monolayers using deep-ultraviolet photolithography that has broad application for high fidelity patterning of cells of varying phenotype in long-term cultures. A polyethylene glycol monolayer was formed on a silica substrate and then patterned using 193 nm light from an ArF excimer laser. The regions of photoablation were then rederivatized with (3-trimethoxysilyl propyl) diethyltriamine (DETA), yielding high contrast cytophilic islands that promoted cell adhesion and growth. Rat hippocampal neurons, motoneurons, and myoblasts were then cultured in a defined, serum-free medium on the patterned surfaces for periods in excess of 40 days. This approach has been shown to be useful as a general method for the long-term culture of multiple cell types in highly defined spatial patterns and can be used for supporting complex cocultures for creating in vitro models for biological systems.
SUBMITTER: Wilson K
PROVIDER: S-EPMC3427986 | biostudies-other | 2011 Mar
REPOSITORIES: biostudies-other
ACCESS DATA