Unknown

Dataset Information

0

Modulation of voltage-gated K+ channels by the sodium channel ?1 subunit.


ABSTRACT: Voltage-gated sodium (Na(V)) and potassium (K(V)) channels are critical components of neuronal action potential generation and propagation. Here, we report that Na(V)?1 encoded by SCN1b, an integral subunit of Na(V) channels, coassembles with and modulates the biophysical properties of K(V)1 and K(V)7 channels, but not K(V)3 channels, in an isoform-specific manner. Distinct domains of Na(V)?1 are involved in modulation of the different K(V) channels. Studies with channel chimeras demonstrate that Na(V)?1-mediated changes in activation kinetics and voltage dependence of activation require interaction of Na(V)?1 with the channel's voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel's pore domain. A molecular model based on docking studies shows Na(V)?1 lying in the crevice between the voltage-sensing and pore domains of K(V) channels, making significant contacts with the S1 and S5 segments. Cross-modulation of Na(V) and K(V) channels by Na(V)?1 may promote diversity and flexibility in the overall control of cellular excitability and signaling.

SUBMITTER: Nguyen HM 

PROVIDER: S-EPMC3494885 | biostudies-other | 2012 Nov

REPOSITORIES: biostudies-other

altmetric image

Publications

Modulation of voltage-gated K+ channels by the sodium channel β1 subunit.

Nguyen Hai M HM   Miyazaki Haruko H   Hoshi Naoto N   Smith Brian J BJ   Nukina Nobuyuki N   Goldin Alan L AL   Chandy K George KG  

Proceedings of the National Academy of Sciences of the United States of America 20121022 45


Voltage-gated sodium (Na(V)) and potassium (K(V)) channels are critical components of neuronal action potential generation and propagation. Here, we report that Na(V)β1 encoded by SCN1b, an integral subunit of Na(V) channels, coassembles with and modulates the biophysical properties of K(V)1 and K(V)7 channels, but not K(V)3 channels, in an isoform-specific manner. Distinct domains of Na(V)β1 are involved in modulation of the different K(V) channels. Studies with channel chimeras demonstrate tha  ...[more]

Similar Datasets

| S-EPMC5892571 | biostudies-literature
| S-EPMC8589445 | biostudies-literature
2022-06-09 | GSE186729 | GEO
| S-EPMC7103644 | biostudies-literature
| S-EPMC2799681 | biostudies-literature
| S-EPMC6843408 | biostudies-literature
2020-02-08 | GSE136927 | GEO
| S-EPMC3207155 | biostudies-literature
| S-EPMC6033619 | biostudies-literature
| S-EPMC8304757 | biostudies-literature