SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes.
Ontology highlight
ABSTRACT: The spermatogenic lineage is established after birth when gonocytes migrate to the basement membrane of seminiferous tubules and give rise to spermatogonial stem cells (SSC). In adults, SSCs reside within the population of undifferentiated spermatogonia (A(undiff)) that expands clonally from single cells (A(single)) to form pairs (A(paired)) and chains of 4, 8 and 16 A(aligned) spermatogonia. Although stem cell activity is thought to reside in the population of A(single) spermatogonia, new research suggests that clone size alone does not define the stem cell pool. The mechanisms that regulate self-renewal and differentiation fate decisions are poorly understood due to limited availability of experimental tools that distinguish the products of those fate decisions. The pluripotency factor SALL4 (sal-like protein 4) is implicated in stem cell maintenance and patterning in many organs during embryonic development, but expression becomes restricted to the gonads after birth. We analyzed the expression of SALL4 in the mouse testis during the first weeks after birth and in adult seminiferous tubules. In newborn mice, the isoform SALL4B is expressed in quiescent gonocytes at postnatal day 0 (PND0) and SALL4A is upregulated at PND7 when gonocytes have colonized the basement membrane and given rise to spermatogonia. During steady-state spermatogenesis in adult testes, SALL4 expression overlapped substantially with PLZF and LIN28 in A(single), A(paired) and A(aligned) spermatogonia and therefore appears to be a marker of undifferentiated spermatogonia in mice. In contrast, co-expression of SALL4 with GFR?1 and cKIT identified distinct subpopulations of A(undiff) in all clone sizes that might provide clues about SSC regulation. Collectively, these results indicate that 1) SALL4 isoforms are differentially expressed at the initiation of spermatogenesis, 2) SALL4 is expressed in undifferentiated spermatogonia in adult testes and 3) SALL4 co-staining with GFR?1 and cKIT reveals distinct subpopulations of A(undiff) spermatogonia that merit further investigation.
SUBMITTER: Gassei K
PROVIDER: S-EPMC3543410 | biostudies-other | 2013
REPOSITORIES: biostudies-other
ACCESS DATA