Unknown

Dataset Information

0

Flagellum density regulates Proteus mirabilis swarmer cell motility in viscous environments.


ABSTRACT: Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming--increases in cell length and flagellum density--and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ?5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD(4)C(2), the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters.

SUBMITTER: Tuson HH 

PROVIDER: S-EPMC3553826 | biostudies-other | 2013 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Flagellum density regulates Proteus mirabilis swarmer cell motility in viscous environments.

Tuson Hannah H HH   Copeland Matthew F MF   Carey Sonia S   Sacotte Ryan R   Weibel Douglas B DB  

Journal of bacteriology 20121109 2


Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes th  ...[more]

Similar Datasets

| S-EPMC3668726 | biostudies-literature
2015-04-13 | GSE63321 | GEO
2015-04-13 | E-GEOD-63321 | biostudies-arrayexpress
2018-08-10 | GSE96042 | GEO
| S-EPMC2395036 | biostudies-literature
2019-05-23 | GSE131647 | GEO
| S-EPMC2876570 | biostudies-literature