Unknown

Dataset Information

0

Neuropeptide Y-induced phase shifts of PER2::LUC rhythms are mediated by long-term suppression of neuronal excitability in a phase-specific manner.


ABSTRACT: Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel wheel-induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. The authors examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression of neuronal excitability in a phase-specific manner. First, it was found that NPY-induced phase advances in PER2::LUC SCN cultures are largest when NPY (2.35 µM) is given in the early part of the day (circadian time [CT] 0-6). In addition, PER2::LUC levels in NPY-treated (compared to vehicle-treated) samples were suppressed beginning 6-7?h after treatment. Similar NPY application to organotypic Per1::GFP SCN cultures resulted in long-term suppression of spike rate of green fluorescent protein-positive (GFP+) cells when slices were treated with NPY during the early or middle of the day (zeitgeber time [ZT] 2 or 6), but not during the late day (ZT 10). Furthermore, 1-h bath application of NPY to acute SCN brain slices decreased general neuronal activity measured through extracellular recordings. Finally, NPY-induced phase advances of PER2::LUC rhythms were blocked by latent depolarization with 34.5?mM K(+) 3?h after NPY application. These results suggest that NPY-induced phase advances may be mediated by long-term depression of neuronal excitability. This model is consistent with findings in other brain regions that NPY-induced persistent hyperpolarization underlies mechanisms of energy homeostasis, anxiety-related behavior, and thalamocortical synchronous firing.

SUBMITTER: Besing RC 

PROVIDER: S-EPMC3568491 | biostudies-other | 2012 Mar

REPOSITORIES: biostudies-other

altmetric image

Publications

Neuropeptide Y-induced phase shifts of PER2::LUC rhythms are mediated by long-term suppression of neuronal excitability in a phase-specific manner.

Besing Rachel C RC   Hablitz Lauren M LM   Paul Jodi R JR   Johnson Russell L RL   Prosser Rebecca A RA   Gamble Karen L KL  

Chronobiology international 20120301 2


Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel wheel-induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. The authors examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression  ...[more]

Similar Datasets

| S-EPMC6772343 | biostudies-literature
| S-EPMC3414513 | biostudies-literature
| S-EPMC5003050 | biostudies-literature
| S-EPMC6969148 | biostudies-literature
| S-EPMC5114562 | biostudies-other
| S-EPMC4697390 | biostudies-other
| S-EPMC6139607 | biostudies-literature
| S-EPMC6582764 | biostudies-literature
| S-EPMC2577701 | biostudies-literature
| S-EPMC6555903 | biostudies-other