Leaf-wax n-alkanes record the plant-water environment at leaf flush.
Ontology highlight
ABSTRACT: Leaf-wax n-alkanes (2)H/(1)H ratios are widely used as a proxy in climate reconstruction. Although the broad nature of the relationship between n-alkanes ?(2)H values and climate is appreciated, the quantitative details of the proxy remain elusive. To examine these details under natural environmental conditions, we studied a riparian broadleaf angiosperm species, Populus angustifolia, growing on water with a constant ?(2)H value and monitored the ?(2)H values of leaf-wax n-alkanes and of stem, leaf, stream, and atmospheric waters throughout the entire growing season. Here we found the ?(2)H values of leaf-wax n-alkanes recorded only a 2-wk period during leaf flush and did not vary for the 19 weeks thereafter when leaves remained active. We found ?(2)H values of leaf-wax n-alkanes of P. angustifolia record conditions earlier in the season rather than fully integrating the entire growing season. Using these data, we modeled precipitation ?(2)H values during the time of wax synthesis. We observed that the isotope ratios of this precipitation generally were (2)H-enriched compared with mean annual precipitation. This model provides a mechanistic basis of the often-observed (2)H-enrichment from the expected fractionation values in studies of broadleaf angiosperm leaf-wax ?(2)H. In addition, these findings may have implications for the spatial and temporal uses of n-alkane ?(2)H values in paleoapplications; when both plant community and growth form are known, this study allows the isolation of the precipitation dynamics of individual periods of the growing season.
SUBMITTER: Tipple BJ
PROVIDER: S-EPMC3574905 | biostudies-other | 2013 Feb
REPOSITORIES: biostudies-other
ACCESS DATA