Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch).
Ontology highlight
ABSTRACT: The fruit of melting-flesh peach (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high expression of PpACS1 (an isogene of 1-aminocyclopropane-1-carboxylic acid synthase), resulting in rapid fruit softening at the late-ripening stage. In contrast, the fruit of stony hard peach cultivars do not soften and produce little ethylene due to low expression of PpACS1. To elucidate the mechanism for suppressing PpACS1 expression in stony hard peaches, a microarray analysis was performed. Several genes that displayed similar expression patterns as PpACS1 were identified and shown to be indole-3-acetic acid (IAA)-inducible genes (Aux/IAA, SAUR). That is, expression of IAA-inducible genes increased at the late-ripening stage in melting flesh peaches; however, these transcripts were low in mature fruit of stony hard peaches. The IAA concentration increased suddenly just before harvest time in melting flesh peaches exactly coinciding with system 2 ethylene production. In contrast, the IAA concentration did not increase in stony hard peaches. Application of 1-naphthalene acetic acid, a synthetic auxin, to stony hard peaches induced a high level of PpACS1 expression, a large amount of ethylene production and softening. Application of an anti-auxin, ?-(phenylethyl-2-one)-IAA, to melting flesh peaches reduced levels of PpACS1 expression and ethylene production. These observations indicate that suppression of PpACS1 expression at the late-ripening stage of stony hard peach may result from a low level of IAA and that a high concentration of IAA is required to generate a large amount of system 2 ethylene in peaches.
SUBMITTER: Tatsuki M
PROVIDER: S-EPMC3580816 | biostudies-other | 2013 Feb
REPOSITORIES: biostudies-other
ACCESS DATA